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Summary. The Kekulé structures of benzenoid hydrocarbons of type A(n,m) are enumerated. Here
A(n,m) stands for a system composed of n condensed zigzag aromatic chains, each containing m
hexagons. We study the hitherto unresolved case when the chain length m is variable and the number
of chains » is constant.
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Die Anzahl von Kekulé-Strukturen von Zick-zack-Mehrfachketten-Aromaten

Zusammenfassung. Es wird die Anzahl der Kekulé-Strukturen von bezenoiden Kohlenwasserstoffen
des Typs A(n,m) ermittelt. A(n, m) bezeichnet dabei Systeme, die aus # kondensierten aromatischen
Zick-zack-Ketten bestchen, wobei jede m Sechsecke enthilt. Es wird der bis jetzt ungeldste Fall
behandelt, wo die Kettenldnge m variabel ist, die Anzahl der Ketten n jedoch konstant bleibt.

Introduction

In this paper we are concerned with the Kekulé structure counts of benzenoid
systems of the type A(n, m) which we call multiple zigzag chains. Such systems can
be viewed as being composed of n condensed zigzag-chains, each containing m
hexagons. As an example compare the formula for A(n, m) with m=5 and n=3.

Evidently, the system A(n, m) possesses n x m hexagons. The respective benzenoid
hydrocarbon has the formula C,, 4,4 mmHapn 4+ 1) The single-chain zigzag ben-
zenoid hydrocarbons (benzene, naphthalene, phenanthrene, chrysene, picene,...)
correspond to the special cases of A(n,m) when n=1 (and m=1,2,3,4,5,...,
respectively). The case n=0 formally corresponds to the linear polyene series
[ethylene (m=1), butadiene (m=2), hexatriene (m=3),...]; the respective Kekulé
structure counts are always equal to unity.

The enumeration of the Kekulé structures of A(n,m) attracted a considerable
attention of theoretical chemists. The fact that the Kekulé structure count of A(1,m)
is the (m + 1)-th Fibonacci number was known already to Gordon and Davison in
the early fifties [ 1] and was repeatedly mentioned in several subsequent publications
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m <

A{n,m)

[2-5]. Randic [3] seems to be the first to count the Kekulé structures of A(2, m).
Results pertaining to the Kekulé structures of A(3,m) were communicated by
Ohkami and Hosoya [6]. Nevertheless, the first systematic enumeration of the
Kekule structures of multiple zigzag chains was undertaken by two of the present
authors [7] and was eventually further extended [8,9]. A detailed survey of the
numerous results obtained in this area is given in the monograph [10].

In line with the notation used in [9,10] the number of Kekulé structures of
A(n, m) will be denoted by Z,(m). The problem of determining Z,(m), preferably by
means of explicit combinatorial expressions, turned out to be a rather difficult one.
The knowledge accumulated so far makes it highly improbable that a single
algebraic formula can be found, which would reproduce the numbers of Kekulé
structures of A(n, m) for all values of m and n. The way out of such a difficulty (which
is not at all unusual in the theory of Kekulé structure enumeration [ 10]), is to search
for particular solutions. The natural procedure is to separately examine the below
two cases:

(a) the chain length m has a fixed value whereas the number n of chains varies;
(b) the chain length m varies whereas the number n of chains has a fixed value.

The study of the Z,(m)-problem [7-10] revealed that the approach (a) is much
easier. Explicit combinatorial expressions for Z,(m) have been deduced for
m=1,2,...,10[8,10]. For a fixed value of m, Z,(m) is a polynomial in the variable
n. Its degree is equal to m. The first ten polynomials Z,(m) are collected on p. 143 of
[10]. There seems to be no obstacle to determine such expressions also for higher
values of m, except that these tasks would require very lengthy calculations and
perplexed algebraic manipulations.

The treatment of the chemically more interesting case (b) encounters serious
difficulties. If m is the variable parameter, then for small values of n(n<Y5) it was
possible to deduce [8] recurrence relations for Z,(m); these are collected on p. 138 of
[10]. The original method for obtaining such recurrence relations — described in
detail in [8] — is very laborious and has to be employed separately for each particular
value of n.

In this paper we report some progress along these lines by establishing the
general form of the recurrence relation for Z,(m). We also show how this recurrence
can be solved and, in particular, that Z,(m) is an exponential function of m.
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Furthermore, we determine the approximate behaviour of Z,(m) for large values of
n and m. By this we come somewhat closer to the complete enumeration of the
Kekulé structures of multiple zigzag chain aromatics.

Results and Discussion
Recurrence Relations for Z,(m) for Fixed n

As already mentioned, the first few recurrence relations for Z,(m) with fixed values
ofn(n=1,2,...,5) have been obtained in [8]. In this section we show how from these
formulas the recurrence relations for higher values of n can be determined in a
systematic way. First of all, however, we list the respective recurrences for n<10.

Zo(m)=Zo(m—1) (1a)
Z(m)=2Zy(m—1)+Z(m—2) (1b)
Z,m)=2Z,(m—1)+Z,(m—2)—Z,(m—3) (1c)
Zym)=2Z5m—1)+ 3Z3(m—2) — Z;(m—3) — Z5(m—4) (1d)
Z,m)=3Z,m—-1)+3Z,m—2)—4Z,m—3)—Z,m—4)+Z,(m—75) (1e)
Z(my=3Zsm—1)+6Zsm—2)—4Zsm—3)—5Zs(m—4)

+Zs(m—5)+ Zs(m—06) (1f)
Zsmy=4Z(m—1)+6Zg(m—2)—10Zs(m—3)—5Zs(m—4)

+6Zg(m—"5)+ Zg(m—6)— Zg(m—7) (1g)
Zm=4Z,m—1)+10Z,m—2)—10Z,(m—3)—15Z,(m—4)

+6Z,(m—5)+TZ,(m—6)—Z,(m—T)— Zg(m—28) (1h)
Zom)=5Zgm—1)+10Zg(m—2) —20Zg(m—3) — 15Zg(m—4) + 21 Zg(m—5)

+TZgm—6)—8Zg(m—"T)— Zg(m—28) + Zg(m—9) (1i)

Zo(m)=5Zg(m—1)+ 15Zy(m—2) —20Zo(m—3) — 35Zy(m—4)
+21Zg(m—5)+ 28 Zo(m—6) — 8 Zg(m—T7) — 9 Zy(m—38)
+ Zo(m—9) + Zo(m—10) (15)
Ziom)=6Ziom— 1)+ 15Z,o(m—2)—35Z,o(m—3)—35Z,,(m—4)
+56Z,0(m—5)+28Z,o(m—6)—36Z,,(m—7)—9Z,o(m—238)
+10Z,o(m—9)+Z,o(m—10) — Z,,(m—11). (1k)

Define an auxiliary benzenoid system A(n,m,l), obtained by adding | new
hexagons, 0<<I<n, to the top of A(n, m) (see [10], p. 136); as an example compare
the formula A(n,m,l) with m=4, n=>5, [=3. Note that A(n, m,0)= A(n, m) whereas
A(n,m,n)=A(m,m+1). Let Z,(m,]) stand for the number of Kekulé structures of
A(n,m, ).

Now, by means of the fragmentation method [ 8, 10] one immediately attains at

Z,m) = Zym—1)+ Zym—2)+ 5 Zym—2,1)
=1
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m <

n
Aln,m 1)

and

Zm—-2l)=Zym-2+ Y Zm—31).

11=n—l

The combination of the above two relations results in

Zm=2Zm—1)+2Z,m—2)+ Z K,Z(m—i—1) (2
izl
where
n—1 n—1 n—1 n—1
Ki=2 2 2 - Y L (3)
Lh=1lL=n—UlLlz=n—1I Li=n—1li-1

Comparing formula (3) with the known algorithmic procedure for the calculation
of Z,(m) (see [10], pp.144—145), we conclude that

K, =Z,_,(i). )

Therefore, the coefficients K,,K,,...,K,... in Eq. (2) satisfy the same recurrence
relation as the number of Kekulé structures of A(n—2,m). If this latter recurrence
is known, then we can easily eliminate the coefficients K, from Eq. (2) and arrive at
a recurrence relation for the Kekulé structure count of A(n, m).

In the below example we show how formula (1e) is deduced from Egs. (2) and
(Ic). Bearing in mind the form of (1c), define an auxiliary quantity R,(m):

R, (m)=Z,(m)—2Z,(m—1)—Z{m—2)+ Z,(m—3)

and observe that Eq. (1c) is tantamount to the condition R,(m)=0. The application
of formula (2), n=4, to the right-hand side of R,(m) results in

R, (m) = [24(m—— 1)+ Zym—2)+ ¥ K, Zym—i— 1)] —2[24(m—2)+ Z(m—3)

izl

+y KiZ4(m—i—2):|—[Z4(m—3)+Z4(m—4)+ y KiZ4(m—i—3)]

iz1 izl
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+ [24(m—4)+z4(m—5)+ Y Kiz4(m—i—4)J

iz1
=Zym—1)+(1—2+4K ) Zym—2)+ (—2—1+K, —2K,)Z,(m—3)
F(—14+1+K;— 2K, —K ) Z,(m—4) + Z,(m—5)

+ 2 (Ki—2K; =K, +K;_5)Zy(m—i—1).

i>4
Because of (4), K;—2K;_; —K;_, +K;_3=0for all i >4 and consequently,
Z,(m)—2Z,(m—1)—Z,m—2)+Z,(m—3)=Z(m—1)+(K,—1)Z,(m—2)
+ (Kz - 2K1 - 3)24(7’}’1— 3) + (K3 - 2K2 - KI)Z4(m - 4) + Z4(m - 5).

Equation (1e) follows from this latter identity by taking into account the conditions
K,=7Z,(1)=3,K,=7,(2)=6 and Ky, =Z,(3)=14.

By means of the above illustrated procedure the recurrence relations for Z (m)
can be obtained one-by-one, leading e.g. to Eqs. (1a)-(1k). However, with the
increasing value of the parameter n the respective calculations, although routine and
straightforward, become more and more involved.

In the subsequent section this problem is overcome by finding a general
expression for the recurrence relation for Z (m).

A General Formulae for the Recurrence Relation for Z,(m) for Fixed n

By inspecting the recurrence relations for Z,(m) for n=0,1,..., 10, given by Egs.
(1a)—(1k), we observe the following regularities.
(i) Z,(m) obeys a linear recurrence relation of the order n+ 1:
n+1

Zm) =Y. G Z,m—k; m>n+1, 00, (52)
k=1

Here a,, k=1,2,...,n+1, denote the respective coefficients which are independent
of m.

(i) For k=1,2,...,n+1 the signs of the coefficients a,, follow the pattern
++—-——++—-——....

(iii) For n>0 the first coefficient in Eq. (5a) is given by a,, = [(n+1)/2].
Here and later [x] denotes the smallest integer which is not smaller than x. (For
instance, [3.9]1=4,[4] =4, [4.1]1=5)

(iv) Each coeflicient, except the first, is equal to the sum of two previous
coefficients, namely the identity

|Genl = - 2| + 15— 1 -1
is obeyed for alln>2, k>2.

The properties (i)—(iv) together with the condition a,, =1, fully determine all the
coefficients a,,. Then an elementary combinatorial reasoning leads to the formula

Uy = (— 1)H21+1 ( [(n+ k)/21>
kn k
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ie.

n+1 k 2
Zn(m): z (_ 1)[k/2]+1<|—(n +k )/ 1>Zn(m—k). (Sb)
k=1
The above general combinatorial expression for the recurrence relations of Z,(m)
with fixed n applies to all n>0 and all m>n+ 1. Formulas (1a)—(1k) are just special
cases of (Sb) forn=0,1,...,10.
A somewhat more compact way of writing Eq. (5b) is

n+1l k 2
Z@4WWC“+)”vaw—m=o (50
k=0 k
In the work [9] another recurrence relation for Z,(m) was reported, namely
n+1
Z(m)= Y by, Zm—2k;m=2n+2,n=0 (6)
k=1
where
+k+1
by = (— 1)1 (" > 7
m=(—1) ( % 0

Although the forms of (5) and (6) look quite similar, they are far from being
equivalent. Whereas Eqgs. (5) express the Kekule structure count of A(n, m) by means
of a recurrence relation of order n+ 1, the respective recurrence relation given by
Eq.(6)is of order 2n+ 2. In particular, for n =1 and n =2 the special cases of (6) read:

Z.(m)=3Z(m—2) — Z,(m—4) (82)
Z)(m) = 6 Z,(m—2) — 5Z,(m—4) + Z,(m—6) (8b)

which should be compared with Egs. (1b) and (1c). Using Eq. (1c) and the simple
initial conditions Z,(0) = 1, Z,(1) = 3, Z,(2) = 6 we can compute Z,(m) for all m>3.
On the other hand, Eq. (8b) requires the significantly more complicated initial
conditions Z,(0) =1, Z,(2) =6, Z,(4) =31 (if n is even) and Z,(1)=3, Z,(3) =13,
Z,(5)="170 (if m is odd) and enables the calculation of Z,(m) only for m>6. Such
differences between (5) and (6) are even more pronounced for larger values of n.
Evidently, it is much more expedient to use (5) than (6). The coefficients of Egs.
(5) and (6) are mutually related in a fairly complicated manner:
2k—1
bkn =2 alk,n - '21 (_ 1)] ajn a2k—j,n'
i=
Whence, for any particular value of n, Eq. (6) can always be deduced from the
respective Eq. (5).
We wish to point out another intriguing relation between Egs. (5) and (6). For
even values of the parameter n, Eq. (5b) can be transformed into

n/2+1 2 k
Zum ="3 -y (2

k=1

>Z,,(m —2k+1)

n krﬁ(— 1)"“(”/22: k>Z,,(m—2k). )
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On the other hand, from (6) and (7) one immediately obtains

2 [+ /2 +k
n/2*1(m) Z ( ) 1<n 2%

The coefficients in the last summation of (9) are precisely the same as the coefficients
in (10).

>zn,2_1(‘m —2Kk). (10)

Solving the Recurrence Relation for Z,(m) for Fixed n

The standard method [11] for solving recurrence relations of the type (5) is to find
the roots t,,t,,...,t,4+, of the auxiliary equation

nt+1

tn+1 Za l'n+1_k (11)

Ifalltherootsty,¢,,...,t,, are mutually different and all are real-valued (i.e. no one
of them is complex-valued), then the general solution of (5) is of the form

Z(m)=C ()" + Cyt)" + - + Cpy 1ty )" (12)

where C,,C,,...,C,,; are multipliers which can be determined from the initial
conditions i.e. from the known Kekulé structure counts of A(n,m), m=0,1,...,n
In Table 1 are collected the roots of the equation (11) forn=1,2,..., 10.

Table 1. The roots of the auxiliary equation of the recurrence relation (5) for the first few values of
the parameter n

n=1 n=2 n=3 n=4 n=>5
t 1.618034 2.246980 2.879385 3.513337 4.148115
t, —0.618034 0.554958 0.652704 0.763521 0.880181
ts —0.801938 —0.532089 0.521109 0.564681
ty —1.000000 —0.594351 —0.514964
ts —1.203616 —0.667993
te —1.410020

n==6 n="7 n=_§ n=9 n=10
iy 4.783386 5.418976 6.054783 6.690745 7.326822
ty 1.000000 1.121734 1.244724 1.368584 1493074
ts 0.618034 0.676582 0.738245 0.801938 0.867030
ty 0.511170 0.536209 0.568521 0.605152 0.644570
ts —0.547318 —0.508661 0.506914 0.523246 0.545129
te —0.747238 —0.588085 —0.528643 —0.505648 0.504702
tq —1.618034 —0.829690 —0.633601 —0.554957 —0.519255
tg —1.827065 —0.914164 —0.682079 —0.585193
to —2.036780 —1.000000 —0.732544
tio —2.246980 —1.086803

11 —2.457534
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Based on the data from Table 1 we can formulate the following rules. Although
the validity of these rules was verified only for the first few values of n, there is little
doubt that they apply to all recurrence relations of the type (5).

Rule 1. For all n>0, all the roots of the Eq. (11) are real-valued numbers.

Rule 2. For a given value of n no two of the roots of (11) coincide.

Rule 3. For two consecutive values of n the roots of (11) interlace each other. In
other words, if £;(p), t5(p),. . ., t,+(p) denote the roots of Eq. (11) for n=p, then

t(p)>t1(p—1)>t,(0) > 1,(p—1)> t3(p) > -+ > 1) > 1, (p— 1) > 1,1 4(p)-

When the roots of Eq. (11) are considered as functions of the parameter n then
this functional dependence is almost perfectly linear. This remarkable regularity is
illustrated in Fig. 1.

For n<10 the following approximate formulas were established using the
method of least squares:

t, =0.6336 n+0.9847 (13a)
t, =0.1184 n+0.2984 (13b)
t, = —0.0801 n—0.2756 (13¢)
t,. 4= —0.2056 n1—0.3909. (13d)

The correlation coefficients of Egs. (13a)-(13d) are 0.999995, 0.9995, —0.9989 and
—0.99987, respectively.
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. n Fig. 1. The roots of the auxiliary equation of the

0 2 A 6 8 10 recurrence relation (5) as functions of the parameter n
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The linear dependence of the roots of Eq. (11) on the parameter n is in harmony
with the previously mentioned fact that Z (m) is an m-degree polynomial in the
variable n.

From Fig. 1 we see that one root of (11), namely ¢,, is much larger than the other
roots. In addition to this, with increasing n, t, increases much faster than the other
roots (see, for instance, Egs. (13)). This means that for large values of m and » the
first term on the right-hand side of (12) will have the dominant contribution to Z,(m).
In other words, Z,(m) behaves asymptotically as C,(t,)" i.e. as C,(an+b)™ where
C,, a and b are constants. This, in turn, means that

Z,m=~C(an+b)" (14a)

is a reasonable approximation for Z (m), provided n and m are sufficiently large.
Employing the relation (13a) and using the value Z,,(10)= 565424068 [10], we
arrive at our final result

Z,(m)~1.279 (0.6336 1+ 0.9847)". (14b)

Since the Z,(m)-values have been calculated and tabulated for m< 10, n<10 (see
[10], p. 144), formula (14) covers just the case for which the Kekulé structures of
A(n, m) have not been enumerated.
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