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Summary. The Kekul~ structures of benzenoid hydrocarbons of type A(n, m) are enumerated. Here 
A(n, m) stands for a system composed of n condensed zigzag aromatic chains, each containing m 
hexagons. We study the hitherto unresolved case when the chain length m is variable and the number 
of chains n is constant. 
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Die Anzahl von Kekul&Strukturen von Zick-zack-Mehrfachketten-Aromaten 

Zusammenfassung. Es wird die Anzahl der Kekul~-Strukturen von bezenoiden Kohlenwasserstoffen 
des Typs A(n, rn) ermittelt. A(n, m) bezeichnet dabei Systeme, die aus n kondensierten aromatischen 
Zick-zack-Ketten bestehen, wobei jede m Sechsecke enth/ilt. Es wird der bis jetzt ungel6ste Fall 
behandelt, wo die Kettenl/inge m variabel ist, die Anzahl der Ketten n jedoch konstant bleibt. 

Introduction 

In this paper we are concerned with the Kekul~ structure counts of benzenoid 
systems of the type A(n, m) which we call multiple zigzag chains. Such systems can 
be viewed as being composed of n condensed zigzag-chains, each containing m 
hexagons. As an example compare the formula for A(n, m) with m = 5 and n = 3. 

Evidently, the system A(n, m) possesses n x m hexagons. The respective benzenoid 
hydrocarbon has the formula Cilm+n+,,n)H2(m+,+ 1). The single-chain zigzag ben- 
zenoid hydrocarbons (benzene, naphthalene, phenanthrene, chrysene, picene,. . .)  
correspond to the special cases of A(n,m) when n =  1 (and m =  1 ,2 ,3 ,4 ,5 , . . . ,  
respectively). The case n = 0  formally corresponds to the linear polyene series 
[ethylene (m= 1), butadiene (m=2), hexatriene (m= 3),.. .]; the respective Kekul~ 
structure counts are always equal to unity. 

The enumeration of the Kekul6 structures of A(n, m) attracted a considerable 
attention of theoretical chemists. The fact that the Kekul~ structure count of A(1, m) 
is the (m + 1)-th Fibonacci number was known already to Gordon  and Davison in 
the early fifties [1] and was repeatedly mentioned in several subsequent publications 
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[2-5]. Randi6 [3] seems to  be the first to count the Kekul6 structures of A(2, m). 
Results pertaining to the Kekul6 structures of A(3,m) were communicated by 
Ohkami and Hosoya [6]. Nevertheless, the first systematic enumeration of the 
Kekul6 structures of multiple zigzag chains was undertaken by two of the present 
authors [7] and was eventually further extended [8, 9]. A detailed survey of the 
numerous results obtained in this area is given in the monograph [10]. 

In line with the notation used in [9, 10] the number of Kekul6 structures of 
A(n, m) will be denoted by Z,(m). The problem of determining Z,(m), preferably by 
means of explicit combinatorial expressions, turned out to be a rather difficult one. 
The knowledge accumulated so far makes it highly improbable that a single 
algebraic formula can be found, which would reproduce the numbers of Kekul6 
structures of A(n, m) for all values of m and n. The way out of such a difficulty (which 
is not at all unusual in the theory of Kekul6 structure enumeration [10]), is to search 
for Particular solutions. The natural procedure is to separately examine the below 
two cases: 

(a) the chain length m has a fixed value whereas the number n of chains varies; 
(b) the chain length m varies whereas the number n of chains has a fixed value. 

The study of the Z,(m)-problem [7-10] revealed that the approach (a) is much 
easier. Explicit combinatorial expressions for Z,(m) have been deduced for 
m = 1, 2 . . . .  ,10 [8, 10]. For a fixed value of m, Z,(m) is a polynomial in the variable 
n. Its degree is equal to m. The first ten polynomials Z,(m) are collected on p. 143 of 
[10]. There seems to be no obstacle to determine such expressions also for higher 
values of m, except that these tasks would require very lengthy calculations and 
perplexed algebraic manipulations. 

The treatment of the chemically more interesting case (b) encounters serious 
difficulties. If m is the variable parameter, then for small values of n(n <<. 5) it was 
possible to deduce [8] recurrence relations for Z,(m); these are collected on p. 138 of 
[10]. The original method for obtaining such recurrence re la t ions-  described in 
detail in [8] - is very laborious and has to be employed separately for each particular 
value of n. 

In this paper we report some progress along these lines by establishing the 
general form of the recurrence relation for Z,(m). We also show how this recurrence 
can be solved and, in particular, that Z,(m) is an exponential function of m. 
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Fur the rmore ,  we de termine  the approx imate  behav iour  of Z,(m) for large values of 
n and  m. By this we come somewha t  closer to the comple te  enumera t i on  of the 
Kekul6 s tructures of mult iple zigzag chain aromatics.  

R e s u l t s  a n d  D i s c u s s i o n  

Recurrence Relations for Z,(m) for Fixed n 

As al ready ment ioned,  the first few recurrence  relat ions for Z,(m) with fixed values 
of n(n = 1, 2 , . . . ,  5) have been obta ined  in [8]. In this section we show how from these 
formulas  the recurrence  relat ions for higher  values of n can be de te rmined  in a 
systematic  way. First  of  all, however,  we list the respective recurrences  for n ~ 10. 

Zo(m ) = Z 0 ( m -  1) (la) 

Zl(m ) = Z l ( m -  1) + Z l ( m - - 2  ) (lb) 

Z2(m) = 2 Zz(m - 1) + Zz(m - 2) - Z2(m - 3) (lc) 

Z3(m ) = 2 Z 3 ( m -  1) + 3 Z3(m - 2) - Zg(m - 3) - Z 3 ( m -  4) ( ld)  

Zg(m) = 3 Z 4 ( m -  1) + 3 Z ~ ( m -  2) - 4 Z 4 ( m -  3) - Z 4 ( m -  4) + Z 4 ( m -  5) (le) 

Zs(m ) = 3 Z s ( m -  1) + 6 Zs(m - 2) - 4 Z s ( m -  3) - 5 Z s ( m -  4) 

+ Zs(m - 5) + Z s ( m -  6) ( lf)  

Z6(m ) = 4 Z 6 ( m -  1) + 6 Z 6 ( m - 2 )  - 1 0 Z 6 ( m -  3 ) - 5 Z 6 ( m - 4  ) 

+ 6 Z6(m - 5) 

Z7(m ) = 4 Z 7 ( m -  1) + 

+ 6 Z7(m-- 5) 

Z8(m ) = 5 Z 8 ( m -  1) + 

+ 7 Z8(rn - 6) 

Z9(m ) = 5 Z9(m - 1) + 

Zxo(m ) = 

+ Z6(m-- 6) -- Z 6 ( m -  7) (lg) 

1 0 Z 7 ( m - 2  ) - 10 Z 7 ( m - 3  ) - 15 Z v ( m - 4 )  

+ 7 Z7(m - 6) - Z T ( m -  7) - Z s ( m -  8) (lh) 

10 Z a ( m - 2  ) - 2 0  Z s ( m -  3 ) - 15 Z s ( m -  4 ) + 21 Z s ( m -  5 ) 

- 8 Za(m - 7) - Z s ( m -  8) + Z s ( m -  9) (li) 

15 Z 9 ( m - -  2) - 20 Z9(m--  3) - 35 Z9(m-- 4) 

+ 21 Z9(m--  5) -[- 28 Z9(m -- 6) - 8 Z 9 ( m -  7) - 9 Z9(m - 8) 

+ Z 9 ( m -  9) + Z 9 ( m -  10) (l  j) 

6 Z l o ( m -  1) + 15 Z l o ( m -  2) - 35 Z l o ( m -  3) - 35 Z l o ( m - 4  ) 

+ 56 Z l o ( m -  5) + 28 Zlo(m - 6) - 36 Z1 o(rn - 7) - 9 Z l o ( m -  8) 

+ lOZ~o(m--9  ) + Z ~ o ( m -  10) -- Z ~ o ( m -  11). (1 k) 

Define an auxil iary benzeno id  system A(n,m,l), obta ined  by adding 1 new 
hexagons,  O<~l<<,n, to the top of A(n,m) (see [10], p. 136); as an example  compare  
the formula  A(n, m, l) with m = 4, n = 5, 1 = 3. No te  that  A(n, m, 0) - A(n, m) whereas  
A(n,m, n ) - A ( n ,  m +  1). Let  Z,(m, l) s tand for the n u m b e r  of Kekul6 s tructures of 
A(n, m, l). 

Now,  by means  of the f ragmenta t ion  m e t h o d  [-8, 10] one immedia te ly  at tains at 
n--1 

Z,(m) = Z,(m - 1) + Z , (m--  2) + ~ Z , ( m -  2, l) 
l = l  
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and 
t l - - 1  

Z.(m-2, l)=Z.(m-2)+ ~ Zn(m-3,11). 
11 =n--I 

The combinat ion  of the above two relations results in 

where 

Z,(m) = Z,(m - 1) + Z,(m - 2) + ~ Ki Z , ( m -  i - 1) 
i~>l 

(2) 

n - 1  n - 1  n - -1  n - -1  

K i =  L 2 Z "'" Z 1. (3) 
/ 1 = 1  l e = n - l l l 3 = n - 1 2  l i = n - l i _ a  

Compar ing  formula (3) with the known  algorithmic procedure for the calculation 
of Z,(m)(see [10], pp.144-145), we conclude that  

K, = Z._  2(0- (4) 

Therefore, the coefficients K1, K2, . . . ,  Ki , . . .  in Eq. (2) satisfy the same recurrence 
relation as the number  of Kekul6 structures of A ( n - 2 ,  m). If this latter rect/rrence 
is known,  then we can easily eliminate the coefficients K~ from Eq. (2) and arrive at 
a recurrence relation for the Kekul6 structure count  of A(n, m). 

In the below example we show how formula (le) is deduced from Eqs. (2) and 
(lc). Bearing in mind the form of (lc), define an auxiliary quant i ty  R,(m): 

R.(m) = Z.(m) -- 2 Z.(m - 1) -- Za(m-- 2) + Z.(m-- 3) 

and observe that  Eq. (lc) is t an t amoun t  to the condit ion Rz(m ) = 0. The application 
of formula (2), n = 4, to the r ight-hand side of R4(m) results in 

R4(m)=IZ4(m-l)+Z4(m-2)+~KiZ4(m-i-1)l-2[ z 4 ( m - 2 ) + z ~ ( m - 3 ) i > ~ l  

i>~l i>~1 
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+ I  z 4 ( m - 4 ) + z 4 ( m -  5)+ i>1 ~ KiZ4(m- i -4)]  

= Z4(m-- 1) + (1 - - 2 +  K1)Z4(m--2 ) + ( - -2 - -  1 -t-K 2 - 2K1)Za(m-  3 ) 

+ (-- 1 + 1 + K  a - 2 K 2 - K O Z 4 ( m - 4  ) + Z4(rn-  5) 

+ ~, ( K s -  2K,_ 1 - Ks- 2 + Ks- 3)Z4(m- i - 1). 
i>~4 

Because of (4), K s -  2Ki_ 1 - Ks- 2 + Ks- 3 = 0 for all i ~> 4 and consequently, 

Z4(m) - 2Z4(m - 1) - Z4(m - 2) + Zg(m - 3) = Z4(m - 1) + (K 1 - -  1) Z4(m - -  2) 

+ (K 2 - 2K 1 - 3) Z 4 ( m -  3) + (K 3 - 2K 2 - K1)Z4(m - 4) + Z4(m - 5). 

Equation (le) follows from this latter identity by taking into account the conditions 
K 1 = Z2(1 ) = 3, K 2 = Z2(2 ) = 6 and K 3 = Z2(3 ) = 14. 

By means of the above illustrated procedure the recurrence relations for Z,(m) 
can be obtained one-by-one, leading e.g. to Eqs. ( la)-(lk).  However, with the 
increasing value of the parameter  n the respective calculations, although routine and 
straightforward, become more and more involved. 

In the subsequent section this problem is overcome by finding a general 
expression for the recurrence relation for Z,(m). 

A General Formulae for the Recurrence Relation for Z,(m)for Fixed n 

By inspecting the recurrence relations for Z,(m) for n = 0 ,  1, . . . ,  10, given by Eqs. 
( la)-(lk),  we observe the following regularities. 

(i) Z,(m) obeys a linear recurrence relation of the order n + 1: 

n + l  

Z,(m) = ~ ak, Z,(m-- k); m ~> n + 1, n ~> 0. (5a) 
k = l  

Here ak,, k = 1, 2 , . . . ,  n + 1, denote the respective coefficients which are independent 
of re. 

(ii) For  k = l , 2 , . . . , n + l  the signs of the coefficients ak, follow the pattern 
+ + - - + + - - . . . .  

(iii) For  n ~> 0 the first coefficient in Eq. (5a) is given by a l ,  = [(n + 1)/2]. 
Here and later Ix] denotes the smallest integer which is not  smaller than x. (For 
instance, [3.9] = 4, [4] = 4, [4.1] = 5.) 

(iv) Each coefficient, except the first, is equal to the sum of two previous 
coefficients, namely the identity 

[ak,I = [ak,,-2[ + lak- 1 , -  11 

is obeyed for all n ~> 2, k >~ 2. 
The properties (i)-(iv) together with the condition a21 = 1, fully determine all the 

coefficients ak,. Then an elementary combinatorial  reasoning leads to the formula 

1, k/2,+1(r n+k'J21)k 
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i . e .  

.+1 (rln+?j21) 
Z,(m) = ~ ( -  1) fk/21+~ Z,(m - k). (5b) 

k = l  

The above general combinatorial expression for the recurrence relations of Z,(m) 
with fixed n applies to all n ~> 0 and all m ~> n + 1. Formulas ( la)-( lk)  are just special 
cases of (5b) for n = 0, 1, . . . ,  10. 

A somewhat more compact way of writing Eq. (5b) is 

( _  1)r,/a 1 [(n k)/21 Z, (m-k )  = 0. (5c) 
k = 0  

In the work 1-9] another recurrence relation for Z,(m) was reported, namely 
n + l  

Z,(m) = y '  bk= Z,(m - 2k); m ~> 2n + 2, n ~> 0 (6) 
k = l  

where 

bk = ( _ l ) k + l ( n + k + l )  
2k " (7) 

Although the forms of (5) and (6) look quite similar, they are far from being 
equivalent. Whereas Eqs. (5) express the Kekul6 structure count of A(n, m) by means 
of a recurrence relation of order n + 1, the respective recurrence relation given by 
Eq. (6) is of order 2n + 2. In particular, for n = 1 and n = 2 the special cases of(6) read: 

Zl(m) = 3 Z l ( m - 2 )  - Z l ( m - 4 )  (8a) 

Z2(m) = 6 Z 2 ( m -  2) - 5 Z 2 ( m -  4) + Z 2 ( m -  6) (8b) 

which should be compared with Eqs. (lb) and (lc). Using Eq. (lc) and the simple 
initial conditions Z2(0) = 1, 22(1 ) = 3, Z2(2 ) = 6 we can compute Z2(rn ) for all m >~ 3. 
On the other hand, Eq. (Sb) requires the significantly more complicated initial 
conditions 22(0) = 1, Z2(2 ) =- 6, 22(4 ) --= 31 (if n is even) and Z2(1 ) --= 3, Z2(3 ) = 13, 
22(5) = 70 (if m is odd) and enables the calculation of Z2(m ) only for m >~ 6. Such 
differences between (5) and (6) are even more pronounced for larger values of n. 

Evidently, it is much more expedient to use (5) than (6). The coefficients of Eqs. 
(5) and (6) are mutually related in a fairly complicated manner: 

2 k -  1 

bk,=2a2k,,-- ~, (--1)Jajna2k-j,,. 
j = l  

Whence, for any particular value of n, Eq. (6) can always be deduced from the 
respective Eq. (5). 

We wish to point out another intriguing relation between Eqs. (5) and (6). For 
even values of the parameter n, Eq. (5b) can be transformed into 

n/2 + 1 

= ~ ) Z n ( m - 2 k ÷ l )  Z,(m) ~ ( _  1)k+ , In~2 + k \  
k=l 2k-- 1 

n/2 1(n/2 + k "~ 
+ Z ( -  1) k+ Z,,(m - 2k). (9) 

k=l \ 2k J 
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On the other hand, from (6) and (7) one immediately obtains 

n/2 
z = Z ( -  1) z /2_ 

k=l 2k k / 

The coefficients in the last summation of(9) are precisely the same as the coefficients 
in (10). 

Solvin9 the Recurrence Relation for Z,(m) for Fixed n 

The standard method [11] for solving recurrence relations of the type (5) is to find 
the roots tx, t2 , . . . ,  t,+ 1 of the auxiliary equation 

n + l  
tn+l = 2 akn tn+l-k (11)  

k = l  

If all the roots ta, t2, . . . ,  t,+ 1 are mutually different and all are real-valued (i.e. no one 
of them is complex-valued), then the general solution of (5) is of the form 

Z,(m) = C~(tl)" + Ca(t2) m + .-. + C,+ l(t,+ a)" (12) 

where C~,C2,. . . ,C,+~ are multipliers which can be determined from the initial 
conditions i.e. from the known Kekul6 structure counts of A(n, m), m = 0, 1, . . . ,  n. 

In Table 1 are collected the roots of the equation (11) for n = 1, 2 , . . . ,  10. 

Table 1. The roots  of the auxiliary equa t ion  of the recurrence relat ion (5) for the first few values of 

the pa ramete r  n 

n = l  n = 2  n = 3  n = 4  n = 5  

t 1 1.618034 2.246980 2.879385 3.513337 4.148115 

t z - 0 .618034  0.554958 0.652704 0.763521 0.880181 

t 3 -0 .801938  -0 .532089  0.521109 0.564681 

t4 - 1 . 0 0 0 0 0 0  --0.594351 -0 .514964  

t5 -1 .203616  -0 .667993  

t6 - 1.410020 

n = 6  n = 7  n = 8  n = 9  n = l O  

t 1 4.783386 5.418976 6.054783 6.690745 7.326822 

t 2 1.000000 1.121734 1.244724 1.368584 1.493074 

t 3 0.618034 0.676582 0.738245 0.801938 0.867030 

t 4 0.511170 0.536209 0.568521 0.605152 0.644570 

t 5 -0 .547318  -0 .508661  0.506914 0.523246 0.545129 

t 6 -0 .747238  -0 .588085  -0 .528643  -0 .505648  0.504702 

t 7 -1 .618034  -0 .829690  -0 .633601  -0 .554957  -0 .519255  

t 8 -1 .827065  -0 .914164  -0 .682079  -0 .585193  

t 9 --2.036780 --1.000000 -0 .732544  

tlo - 2 . 2 4 6 9 8 0  -1 .086803  

tl1 -2 .457534  



124 I. Gu tman  et al. 

Based on the data from Table 1 we can formulate the following rules. Although 
the validity of these rules was verified only for the first few values of n, there is little 
doubt that they apply to all recurrence relations of the type (5). 

Rule 1. For  all n >~ 0, all the roots of the Eq. (11) are real-valued numbers. 
Rule 2. For  a given value of n no two of the roots of (11) coincide. 
Rule 3. For  two consecutive values of n the roots of (11) interlace each other. In 
other words, if ta(p), ta(p),..., tp+ I(P) denote the roots of Eq. (11) for n = p, then 

tl(p) > tl( p -  1) > t2(p) > t2( p -  1) > t3(p) > . . .  > tp(p) > tp(p-  1) > tp+ I(P). 

When the roots of Eq. (11) are considered as functions of the parameter  n then 
this functional dependence is almost perfectly linear. This remarkable regularity is 
illustrated in Fig. 1. 

For n~< 10 the following 
method of least squares: 

approximate formulas were established using the 

t 1 = 0.6336 n+0.9847 

t 2 = 0.1184 n+0.2984 

t, = - 0.0801 n -  0.2756 

t,+ 1 = -0 .2056 n-0.3909.  

(13a) 

(13b) 

(13c) 
(13d) 

The correlation coefficients of Eqs. (13a)-(13d) are 0.999995, 0.9995, -0 .9989 and 
-0.99987, respectively. 

-2 

ti o 

• ; . • • 

• . o : ~ S  
• • 

| : 

n 

1'0 
Fig. 1. The roots of the auxiliary equation of the 
recurrence relation (5) as functions of the parameter n 
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The linear dependence of the roots of Eq. (11) on the parameter  n is in ha rmony  
with the previously ment ioned  fact that  Zn(m ) is an m-degree polynomial  in the 
variable n. 

F r o m  Fig. 1 we see that  one root  of (11), namely tl, is much  larger than the other 
roots. In addi t ion to this, with increasing n, t I increases much  faster than the other 
roots (see, for instance, Eqs. (13)). This means that  for large values of m and n the 
first term on the r ight-hand side of(12) will have the dominan t  contr ibut ion to Zn(m ). 
In other words, Z,(m) behaves asymptotically as C~(t0 m i.e. as Cl(a n + b) m where 
C~, a and b are constants. This, in turn, means that  

Z,(m) ~ Ca(a n + b) m (14a) 

is a reasonable approximat ion  for Z,(m), provided n and m are sufficiently large. 
Employing the relation (13a) and using the value Zlo(10)= 565424068 [10], we 
arrive at our final result 

Z,(m) ~ 1.279 (0.6336 n + 0.9847) m. (14b) 

Since the Z,(m)-values have been calculated and tabulated for m-~< 10, n~< 10 (see 
[-10], p. 144), formula (14) covers just  the case for which the Kekul6 structures of 
A(n, m) have not  been enumerated.  
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